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Bild 11.2 Teilweise passierbares Höhlensystem und dazugehöriger Graph mit Kantengewichten

Dies führt uns zu dem Array B mit folgenden Kantengewichten:

int B[7][7]=
{
0,0,0,0,0,0,0,
0,0,0,0,0,0,1,
0,0,0,1,0,0,0,
0,0,1,0,0,1,5,
0,0,0,0,9,0,3,
0,0,0,1,0,0,1,
0,1,0,5,3,1,0
};

Wie in Kapitel 3 auch, benötigen Sie an dieser Stelle wieder Wegmarken, die Sie genau dann 
setzen können, wenn Sie einen Knoten schon besucht haben. Dies verhindert, dass Ihr Back­
tracking­Algorithmus einen Weg doppelt geht bzw. im Kreis läuft. Das Array Marke[7][7], 
das Werte vom Typ bool enthält, die genau dann auf true gesetzt werden, wenn der ent­
sprechende Knoten im Array A schon überprüft wurde, leistet genau dies.
Wie funktioniert nun Ihr Backtracking­Algorithmus in der veränderten Umgebung? Die 
Antwort ist, dass sich an dem wesentlichen Kern im Vergleich zum dritten Kapitel nicht viel 
ändert. Um die einzelnen Zielknoten zu überprüfen, die mit einem bestimmten Startknoten 
verknüpft sind, müssen Sie auch in diesem Beispiel zunächst einmal die betreffende Zeile 
auswählen (am Anfang ist dies die zweite Zeile). Anschließend durchlaufen Sie in einer 
Schleife sämtliche Spalten, die der Zeile zugeordnet sind, die den vorher ausgewählten Kno­
ten beschreibt. In dieser Schleife ruft sich der Suchalgorithmus selbst wieder auf, und zwar 
für jeden Spalteneintrag einmal. Sei nun i die i­te Zeile von A und j die j­te Spalte von A. Sei 
k ein Zähler, der in diesem Beispiel von 1 bis 6 zählt, und j eine beliebige festgehaltene 
Spalte, die am Anfang 2 ist. Dann sieht der Hauptalgorithmus so aus:

for (int k=0; k<=6; k++) { SucheAusgang(j,k); } // j ist fest vorgegeben

Die Funktion SucheAusgang(), in die der Hauptalgorithmus eingebettet ist, bekommt zwei 
Parameter übergeben, nämlich i und j. Der Parameter i beschreibt hierbei den Startknoten 
und j einen Knoten, der genau im nächsten Schritt erreicht werden kann. Die Funktion 
SucheAusgang() untersucht für jeden Knoten, der mit dem Knoten j verknüpft ist, ob dieser 
der Zielknoten ist. Dies geschieht rekursiv, das heißt, es wird versucht, das Ausgangs­
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