
 11.1 Darstellung eines Graphen als Adjazenzmatrix 439

Bild 11.2 Teilweise passierbares Höhlensystem und dazugehöriger Graph mit Kantengewichten

Dies führt uns zu dem Array B mit folgenden Kantengewichten:

int B[7][7]=
{
0,0,0,0,0,0,0,
0,0,0,0,0,0,1,
0,0,0,1,0,0,0,
0,0,1,0,0,1,5,
0,0,0,0,9,0,3,
0,0,0,1,0,0,1,
0,1,0,5,3,1,0
};

Wie in Kapitel 3 auch, benötigen Sie an dieser Stelle wieder Wegmarken, die Sie genau dann
setzen können, wenn Sie einen Knoten schon besucht haben. Dies verhindert, dass Ihr Back­
tracking­Algorithmus einen Weg doppelt geht bzw. im Kreis läuft. Das Array Marke[7][7],
das Werte vom Typ bool enthält, die genau dann auf true gesetzt werden, wenn der ent­
sprechende Knoten im Array A schon überprüft wurde, leistet genau dies.
Wie funktioniert nun Ihr Backtracking­Algorithmus in der veränderten Umgebung? Die
Antwort ist, dass sich an dem wesentlichen Kern im Vergleich zum dritten Kapitel nicht viel
ändert. Um die einzelnen Zielknoten zu überprüfen, die mit einem bestimmten Startknoten
verknüpft sind, müssen Sie auch in diesem Beispiel zunächst einmal die betreffende Zeile
auswählen (am Anfang ist dies die zweite Zeile). Anschließend durchlaufen Sie in einer
Schleife sämtliche Spalten, die der Zeile zugeordnet sind, die den vorher ausgewählten Kno­
ten beschreibt. In dieser Schleife ruft sich der Suchalgorithmus selbst wieder auf, und zwar
für jeden Spalteneintrag einmal. Sei nun i die i­te Zeile von A und j die j­te Spalte von A. Sei
k ein Zähler, der in diesem Beispiel von 1 bis 6 zählt, und j eine beliebige festgehaltene
Spalte, die am Anfang 2 ist. Dann sieht der Hauptalgorithmus so aus:

for (int k=0; k<=6; k++) { SucheAusgang(j,k); } // j ist fest vorgegeben

Die Funktion SucheAusgang(), in die der Hauptalgorithmus eingebettet ist, bekommt zwei
Parameter übergeben, nämlich i und j. Der Parameter i beschreibt hierbei den Startknoten
und j einen Knoten, der genau im nächsten Schritt erreicht werden kann. Die Funktion
SucheAusgang() untersucht für jeden Knoten, der mit dem Knoten j verknüpft ist, ob dieser
der Zielknoten ist. Dies geschieht rekursiv, das heißt, es wird versucht, das Ausgangs­

A
lg

or
ith

m
en

 u
nd

 D
at

en
st

ru
kt

ur
en

 d
ow

nl
oa

de
d

fr
om

 w
w

w
.h

an
se

r-
el

ib
ra

ry
.c

om
 b

y
H

oc
hs

ch
ul

e
M

an
nh

ei
m

 o
n

N
ov

em
be

r
11

, 2
02

2
Fo

r
pe

rs
on

al
 u

se
 o

nl
y.

	Inhalt
	Vorwort
	Teil I: Grundlagen
	1 Einführung
	1.1 Berechenbarkeit von Algorithmen
	1.2 Wie eine Turing-Maschine arbeitet
	1.2.1 Beispiel 1: Addition zweier Zahlen mit einer Turing-Maschine
	1.2.2 Beispiel 2: Suchen und ersetzen
	1.2.3 Beispiel 3: Multiplikation zweier Zahlen mit einer erweiterten Turing-Maschine
	1.2.4 Von der Turing-Maschine zum Prozessor

	1.3 Laufzeitanalyse von Algorithmen
	1.3.1 Das P-NP-Problem

	1.4 Laufzeitabschätzungen von C-Programmen
	1.5 Übungen

	2 Basisalgorithmen
	2.1 Der Ringtausch
	2.2 Einfache Textsuche
	2.3 Einfaches Suchen und Ersetzen
	2.3.1 Entfernen eines Textes aus einer Zeichenkette
	2.3.2 Einfügen von Freiräumen in den Text
	2.3.3 Ein vollständiges Programm zum Suchen und Ersetzen

	2.4 Einfaches Sortieren von Zahlen
	2.4.1 Bubble Sort
	2.4.2 Einfaches, sortiertes Einfügen

	2.5 Primfaktorzerlegung
	2.5.1 Wann ist eine Zahl eine Primzahl?
	2.5.2 Die Primfaktorzerlegung – das Programm „Primteiler“

	2.6 Berechnung des GGT (größter gemeinsamer Teiler)
	2.7 Gezielte Suche nach Primzahlen
	2.7.1 Das Sieb des Eratosthenes

	2.8 Rechnen mit beliebig langen Zahlen
	2.8.1 Addition beliebig langer Zahlen
	2.8.2 Subtraktion beliebig langer Zahlen
	2.8.3 Multiplikation beliebig langer Zahlen (Ägyptische Multiplikation)
	2.8.4 Division beliebig langer Zahlen (Ägyptische Division)

	2.9 Übungen

	3 Rekursive Algorithmen
	3.1 Der Prozessorstapel (Stack)
	3.2 Was sind Rekursionen und wozu werden sie benötigt?
	3.3 Beispielprogramme zur Rekursion
	3.3.1 Berechnung der Fakultät
	3.3.2 Berechnung von Fibonacci-Zahlen
	3.3.3 Das Erstellen von Galois-Feldern
	3.3.4 Die Türme von Hanoi
	3.3.5 Ein Backtracking-Algorithmus
	3.3.6 Ein einfacher Taschenrechner

	3.4 Wann Rekursion und wann lieber nicht?
	3.5 Übungen

	Teil II: Fortgeschrittene Themen
	4 Verkettete Listen
	4.1 Die Erstellung verketteter Listen
	4.1.1 Einfach verkettete Listen
	4.1.2 Doppelt verkettete Listen

	4.2 Blockchains und Listen mit beliebigen Objekten
	4.2.1 Blockchains
	4.2.2 Listen mit beliebigen Objekttypen

	4.3 Listen mit Java erstellen
	4.3.1 Erstellen von Java-Listen mit LinkedList
	4.3.2 Erstellen von Java-Listen mit Vector
	4.3.3 Wann LinkedList und wann Vector?

	4.4 Übungen

	5 Bäume
	5.1 Allgemeine Bäume
	5.1.1 Einfach strukturierte allgemeine Bäume
	5.1.2 Allgemeine Bäume mit beliebigen Objekten

	5.2 Binärbäume
	5.3 Bäume in Java
	5.4 Übungen

	6 Such- und Sortierverfahren
	6.1 Wichtige effiziente Sortierverfahren
	6.1.1 Min-Max-Sort
	6.1.2 Mergesort
	6.1.3 Quicksort
	6.1.4 Treesort
	6.1.5 Heapsort

	6.2 Effiziente Suchalgorithmen
	6.2.1 Der KMP-Algorithmus
	6.2.2 Threadsearch

	6.3 Übungen

	Teil III: Weiterführende Themen
	7 Signalverarbeitung
	7.1 Was ist ein Signal?
	7.1.1 Korrektes Messen von Signalen

	7.2 Generierung digitaler Signale
	7.2.1 Das Rechtecksignal
	7.2.2 Das Sägezahnsignal
	7.2.3 Das Dreiecksignal
	7.2.4 Das weiße Rauschen
	7.2.5 Das Sinussignal
	7.2.6 Zeitveränderliche diskrete Signale

	7.3 Filteralgorithmen
	7.3.1 Der Pop-Klick-Filter
	7.3.2 Der Distortion-Filter
	7.3.3 Der EMA-Filter
	7.3.4 Diskrete Fourier-Transformation (DFT)

	7.4 Übungen

	8 Grafische Bildverarbeitung
	8.1 Der Medianfilter
	8.2 Binärfilter
	8.3 Lineares Filtern mit Filtermasken
	8.4 Chroma Keying
	8.5 Übungen

	9 Simulation neuronaler Netze
	9.1 Zeichenerkennung mit neuronalen Netzen
	9.2 Spracherkennung

	10 Kryptographische Algorithmen
	10.1 Historische Chiffren
	10.1.1 Die Caesar-Chiffre
	10.1.2 Die Vigenère-Verschlüsselung
	10.1.3 Die Enigma

	10.2 Sichere Schlüsselübertragung
	10.2.1 Verwenden der Modulo-Operation
	10.2.2 Verwenden des RSA-Algorithmus

	10.3 Blockchiffren
	10.4 Hashing-Verfahren
	10.4.1 Erweitertes XOR-Hashing
	10.4.2 Der SHA-Algorithmus

	10.5 Erzeugen sicherer Pseudo-Zufallszahlen
	10.6 Übertragen von Nachrichten durch Quantenkryptographie

	11 Graphen
	11.1 Darstellung eines Graphen als Adjazenzmatrix
	11.2 D arstellung eines Graphen als verallgemeinerte Baumstruktur
	11.3 Eulerkreise
	11.4 Petri-Netze
	11.4.1 Prozess-Synchronisation
	11.4.2 Das Erzeuger-Verbraucher-Problem
	11.4.3 Das Philosophenproblem von Dijkstra
	11.4.4 Simulation von Petri-Netzen mit Inzidenzmatrizen

	11.5 Übungen

	Index

