
13.5 Das Iterator-Konzept 359

Abb. 13–9
Iterator-Konzept

Feld

Liste

Iterator

n void remove() erlaubt es, das zuletzt von next() gelieferte Ele-
ment zu löschen, wobei pro next-Aufruf nur einmal remove auf-
gerufen werden darf.

Diese Methoden lassen sich wie im folgenden Beispiel zum Durchlau-
fen einer Kollektion, wie z.B. einer Liste, anwenden. Zunächst muss
der Iterator über eine entsprechende Methode der Kollektion (hier:
iterator()) erzeugt Erzeugen eines

Iterators
werden. Anschließend kann in einer Schleife

so lange die Iterator-Methode next aufgerufen werden, bis der Auf-
ruf von hasNext den Wert false liefert. Da next eine Instanz vom
Typ java.lang.Object liefert, ist gegebenenfalls wieder eine explizi-
te Typkonvertierung notwendig.

java.util.Iterator iter = liste.iterator();
while (iter.hasNext()) {
Object obj = iter.next();
// Verarbeite obj ...

}

Wie kann nun ein solcher Iterator implementiert werden? Wir
wollen dies am Beispiel der Klasse DList darstellen. Grundsätz-
lich muss eine Klasse bereitgestellt werden, die die Schnittstelle
java.util.Iterator unterstützt. In dieser Klasse ListIterator ist
ein Zeiger auf den aktuellen Knoten zu verwalten, der zu Beginn
mit einem Verweis auf den ersten Knoten initialisiert wird (Pro-
gramm 13.12).

Programm 13.12
Iterator für die Klasse
DList

public class DList {
class ListIterator implements java.util.Iterator {

private Node node = null; // aktueller Knoten

// Konstruktor
public ListIterator() {

© Dies ist urheberrechtlich geschütztes Material. Bereitgestellt von: HS Mannheim Fr, Nov 11th 2022, 09:19


